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1. Introduction

The Atmospheric Boundary Layer Environment (ABLE) model effort seeks to create a new
atmospheric model tailored for microscale application (Wang et al., 2012). The model is
currently being applied to highly idealized flows in order to characterize the dynamical core of the
model—the schemes that form the fundamental basis for how fluid quantities are transported and
diffused by the flow. The next stage will see the implementation of various physics
parameterizations (e.g., turbulence closure) to enable more realistic simulations. ABLE is
currently a basic research tool; however, as the model development advances, ABLE will be
useful in applied research and operations and be deployable onto smaller platforms not just
massively parallel clusters.

In the early stage of development, source code flexibility, ease of development, and ease of
maintenance is often prioritized over performance. Standard practice in computer science is to
develop programming libraries to aid in developer efficiency and code maintainability. In
object-oriented design, libraries of routines are replaced with sets of commonly used data
structures and associated operations that have been gathered into classes, and sets of classes
combine to create frameworks. The Battlefield Environment Division Modeling Framework
(BMF) adopts this design and is being developed in tandem with the ABLE model to increase
code maintainability, reduce programming errors, and aid in the incorporation of new technology
and ideas. BMF was designed to facilitate scientific computing by providing design clues to
model developers and including abstracted classes for commonly used operations including
parallel communication using Message Passing Interface (MPI) and grid decomposition. The
basic usage of BMF and the results of implementing MPI-based parallel calculations in ABLE are
documented in this report. Part 2 details features related to time-dependent simulations,
structured grids, and parallel input and output using the Network Common Data Form (NetCDF)
and Hierarchal Data Format version 5 (HDF5) libraries.

The current version of BMF is v0.85; it was developed using the latest Fortran standard, Fortran
2008, and has been tested primarily using the Intel Fortran compiler versions 12.1 and 13.0. The
primary feature-set includes object-oriented programming, such as classes (using derived types),
data encapsulation (via private components of derived types), methods (via type-bound
procedures), and enhancements to Fortran pointer definitions (i.e., contiguous attribute) for
performance intensive tasks. The framework will eventually be ported to other programming
languages to aid in porting models such as ABLE to new platforms.
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The initial test case for using BMF is the inclusion of efficient message passing for massively
parallel computing applications via the MPI library. Current massively parallel clusters use a
collection of multicore systems or nodes connected to a network fabric such as the low-latency,
high-bandwidth, Infiniband. Even for cutting-edge technology, low-latency is relative to other
network technologies like Ethernet; latencies are still large compared with communication
between components within a single node (e.g., between processors and RAM). Developing
applications capable of efficiently utilizing today’s computers, with tens of thousands of
processing cores, requires carefully selecting appropriate algorithms and hiding the latency by
overlapping inter-process (especially inter-node) communication with calculations. Much of this
framework has been designed to facilitate this kind of calculation by reducing the amount of
duplicated code and allowing calculations to proceed with proper cache optimization.

BMF also facilitates the adoption of newer technologies and updated strategies. For example, the
MPI-3 standard is in development, with some implementations already providing access to some
of the newer features. A re-examination of the methods (e.g., user data packing) used to generate
efficient MPI communication will be in order. Future ABLE development will involve
acceleration using many-core architecture such as Intel’s many integrated core (MIC) architecture
or NVIDIA’s Compute Unified Device Architecture (CUDA).
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2. Methodology

The initial three-dimensional (3-D) version of ABLE uses the semi-implicit method for
pressure-linked equations (SIMPLE) finite-volume method for steady-state convection-diffusion
problems. The solution scheme uses the Strongly Implicit Procedure (SIP) (Stone, 1968) to solve
the various sparse matrices. SIP is efficient and converges rapidly; however, it is not amenable to
parallel computation. A parallel version of SIP was implemented by Reeve et al. (2001) by
switching to a red-black ordering. Our implementation follows this strategy; however, the
combination of the red-black scheme and the SIMPLE iterative method leads to difficulties that
reduce the parallel efficiency.

The Cartesian Laplacian operator in three dimensions generates a multi-diagonal matrix, M, with
seven diagonals. SIP begins by generating a matrix that is close to the Laplacian operator, but
has an LU-factorization with four diagonals in the lower triangular matrix at the same bands as
the original matrix, and four diagonals in the upper-triangular matrix again at the same bands as
the original matrix. The new matrix, M + N is put into the following iterative form,

Mx = b (1)

(M + N)x = (M + N)x + (b−Mx) (2)

(M + N)xn+1 = (M + N)xn + Rn (3)

where x is the field of interest, xn and xn+1 are the vector values of the current and next iteration,
respectively, and Rn is the residual of the current iteration. Stone (1968) recognized that by
constraining the extra diagonals in M + N using a Taylor expansion, SIP will rapidly converge to
a solution. SIP is commonly used in computational fluid dynamics (CFD), heat transfer, and
other applications (Reeve et al., 2001). When parallelizing the method, there are three separate
calculations: calculating the diagonals of the lower and upper triangular matrices for the
LU-factorization, the forward substitution using the lower triangular matrix (L), and the
backward substitution using the upper triangular matrix (U).

For each of these calculations, the method begins in one corner and proceeds to the next element,
which is dependent on, say, the elements directly adjacent in the negative Cartesian directions
(see figure 1). The forward and backward substitutions have a similar dependency chain. This
wavefront parallelism is not amenable to efficient distributed computing because of the time a
process is idle waiting for the wavefront to reach it. To overcome this, Reeve et al. (2001)
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developed a scheme in analogy to the red-black Gauss-Seidel iterative solver. With the red-black
scheme during the forward and backward calculations, the domain is envisioned as a
checkerboard and the SIP calculation is performed on all of the “red” points and then repeated for
all of the “black” points (see figure 1).

Updated grid points

 Grid points needing update

Updating requires points above and left.Updating requires points above and left.

Wavefront moves down and right.Wavefront moves down and right.

Standard Ordering

Updated grid points

 Grid points needing update

Alternating points updated simultaneously.Alternating points updated simultaneously

Red-black Ordering

Figure 1. Calculation ordering for the standard SIP and for red-black ordering (from Reeve et al. [2001]) .

Dividing the domain using a Cartesian MPI decomposition in combination with red-black
ordering is worthwhile, because now each process can perform a significant amount of
computation before requiring edge communication with the neighboring processes. The
red-black ordering is applied to the forward and backward substitution phases, calculating all of
the red points can happen without parallel communication. Inter-process communication with
neighboring processes exchanges the updated red points, and then the black points are calculated
again independently. Unfortunately, the LU-factorization phase cannot be reordered this way;
the wavefront parallelism of the LU-factorization significantly constrains the scalability of the
system.

2.1 Design of BMF

The BMF design loosely follows the Model-View-Controller (MVC) design pattern. While some
design considerations have been incorporated to ease the implementation of future features, BMF
is primarily concerned with currently needed functionality. For example, view classes to create
graphical user interfaces (GUIs) have not been created. All current classes in BMF can be
divided into model classes, which are the data structures and associated operations on this data,
and controller classes, which contain much of the program logic. The framework also makes
significant use of the delegate design pattern, which uses helper objects to complete specific tasks.
For example, one of the fundamental model classes is the RealVariable class; it contains an
array of floating-point numbers and associated metadata. A RealVariable object (an
instance of the class) can have a MPIController object attached, which will be responsible for
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all inter-process communication. Attaching a different MPIController object allows for
communication to occur between different sub-groups of processes. In addition, extensive use of
polymorphic variables, inheritance, and method overloading help to overcome some of the
peculiarities of object-oriented design in Fortran 2008.

Several abstractions have been incorporated into BMF to reduce errors and increase
maintainability and flexibility. For example, the ordering of indices for multi-dimensional arrays
can be dynamically configured (currently at compile time). This flexibility was included because
an algorithm may require certain index ordering to efficiently use processor cache. Efficient
cache utilization is critical in demanding computational applications. MPI Cartesian
decompositions add additional complexity, because the ordering of directions for process
coordinates is not required to match the ordering of directions for multi-dimensional arrays.
Objects of coordinate class are used to describe grid-associated coordinates.

An ArrayBounds object describes a contiguous array with a lower and upper bound for each
grid direction. Multiple ArrayBounds objects can be combined describe a more complicated
region using an ArrayRegion object. The most common application of ArrayRegion
objects is to facilitate the overlapping of calculation and MPI communication by performing a
calculation over an inner region while the MPI communication completes, then repeating the
calculation along the boundaries.

An additional convenience class is the GroupedComController class, which allows for
multiple variable objects to be grouped together for the purpose of MPI communication. Often,
in CFD applications the same inter-process communication is performed on multiple variables at
the same time. By grouping the variables into a single buffer, a smaller number of larger
messages can be sent rather than many small messages.

2.2 Performing Serial and Parallel Calculations with Battlefield Environment Division
Modeling Framework

When using RealVariable objects, there can be a performance hit when accessing the
variable directly through the derived-type (e.g., variable%data). Instead, point a declared
contiguous pointer to the variable data, as shown in listing 1. The dynamically determined array
index ordering means that, in general, loops should not need to tie a specific direction to an index.
The ordering within a loop construct (such as do concurrent) should proceed in the most
efficient from a processor cache perspective. Because Fortran uses column-major array ordering,
it means the inner loop index should correspond to the first index in the array to prevent striding
in the memory structure. When an index in a particular direction is required, using the intrinsic
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dot_product function combined with a unit vector defined at compile-time provides a low
impact method to extract the value (see listing 1).

For a calculation that requires MPI communication, the calculation can be divided into pieces and
non-blocking MPI communication initiated so that the calculation is performed over the regions
not dependent on neighbor-process data, while the communication is completing. Convenience
routines exist to facilitate this kind of division of a calculation.

The example code shown in listing 2 can be incorporated into a function that takes an
ArrayRegion object as an argument. Performing the parallel calculation, would then proceed
as shown in listing 3. Within the ArrayRegion class definition, see section A-5 for
convenience routines to facilitate the region decomposition.

2.3 Initiating and Completing MPI Communication

Directly interacting with the MPI environment is meant to be limited to initializing the MPI
environment, creating process topologies (e.g., multidimensional Cartesian decompositions), and
finalizing the environment. BMF allows the dimensionality and ordering of the directions of the
MPI decomposition to set during compilation. The build system, CMAKE, is used to ensure
proper dependencies. The actual number of processes used in each direction is runtime
configurable. Other interactions, especially inter-process communication, are meant to be
performed by higher-level classes, such as the RealVariable,IntegerVariable, or
GroupedComController classes.

To reduce coupling between the MPIController class and other classes, the
MPIController objects simply take a one-dimensional data array and perform the
communication. The higher-level classes ensure proper buffering, data type, and array shape, and
extract the appropriate array elements on both the send and receive sides of the communication.
These abstracted operations are meant to be transparent to the developer allowing alternative
strategies for efficient communication to be explored without major modifications to the source
code using the higher-level classes—the ABLE model should not need to be significantly
modified if the communication strategy shifts from custom data packing routines to derived data
types when shifting to MPI-3.

The grid-associated details of RealVariable objects are internally tied to the array dimensions
and, therefore, to the MPI decomposition dimensions. RealVariable objects support
automatic internal buffering to allow continued access to interior grid points while edges are
being updated via MPI communication. Routines, such as receiveBoundary(...) and
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Listing 1. Performing a serial averaging operation in the x-direction on a 3-D variable with a weighting
function that is only dependent on the x-coordinate.

! The d e c l a r a t i o n s o f t h e n e c e s s a r y v a r a b l e s are p r o v i d e d . Not a l l
! i n i t i a l i z a t i o n o p e r a t i o n s are shown .
c l a s s ( R e a l V a r i a b l e ) : : v a r i a b l e
r e a l ( RealKind ) , dimension ( : , : , : ) , c o n t i g u o u s , p o i n t e r : : v a r P t r
c l a s s ( R e a l V a r i a b l e ) : : w e i g h t i n g
r e a l ( RealKind ) , dimension ( : ) , c o n t i g u o u s , p o i n t e r : : w g h t P t r
c l a s s ( R e a l V a r i a b l e ) : : t h e R e s u l t
r e a l ( RealKind ) , dimension ( : , : , : ) , c o n t i g u o u s , p o i n t e r : : r e s P t r
type ( ArrayBounds ) : : c a l c u l a t i o n B o u n d s
i n t e g e r : : idx1 , idx2 , idx3 , x idx
i n t e g e r , dimension (NUM_GRID_DIMS) : : lbnd , ubnd
i n t e g e r , dimension (NUM_GRID_DIMS) : : xUV

! The c u r r e n t v e r s i o n o f F o r t r a n c o m p i l e r s may have some d i f f i c u l t y
! i n o p t i m i z i n g t h e p o i n t e r v a r i a b l e s when t h e y are c o n t a i n e d w i t h i n
! a d e r i v e d t y p e . I n s t e a d f o r use i n a c a l c u l a t i o n , e x p l i c i t l y a s s i g n
! t h e da ta component o f a R e a l V a r i a b l e o b j e c t t o a p o i n t e r .
v a r P t r => v a r i a b l e%data
w g h t P t r => w e i g h t i n g%data
r e s P t r => t h e R e s u l t%data

! s e t t h e upper and lower l i m i t s f o r t h e 3−D loop
l bnd = c a l c u l a t i o n B o u n d s%lowerBound ( )
ubnd = c a l c u l a t i o n B o u n d s%upperBound ( )

! use a u n i t v e c t o r t o i s o l a t e a s p e c i f i c d i r e c t i o n a l i n d e x
xUV = x x U n i t V e c t o r

do c o n c u r r e n t ( i dx3 = lbnd ( 3 ) : ubnd ( 3 ) , &
idx2 = lbnd ( 2 ) : ubnd ( 2 ) , i dx1 = lbnd ( 1 ) : ubnd ( 1 ) )

! s e v e r a l s t r a t e g i e s were a t t e m p t e d t o i s o l a t e a s p e c i f i c d i r e c t i o n a l
! i n d e x u s i n g t h e i n t r i n s i c d o t _ p r o d u c t had t h e l e a s t pe r fo rmance
! im pa c t .
x idx = d o t _ p r o d u c t ( ( / idx1 , idx2 , i dx3 / ) , xUV )

! t h e xUV s h i f t s t h e v a r i a b l e one p o i n t i n t h e x−d i r e c t i o n
r e s P t r ( idx1 , idx2 , i dx3 ) = &

w g h t P t r ( x idx ) ∗ v a r P t r ( i dx1 +xUV ( 1 ) , i dx2 +xUV ( 2 ) , i dx3 +xUV ( 3 ) ) &
+ (1.− w g h t P t r ( x idx ) ) ∗ v a r P t r ( idx1 , idx2 , i dx3 )

end do
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Listing 2. Performing the same x-averaging calculation using an array region.

! The d e c l a r a t i o n s o f t h e n e c e s s a r y v a r a b l e s are p r o v i d e d . Not a l l
! i n i t i a l i z a t i o n o p e r a t i o n s are shown .
c l a s s ( R e a l V a r i a b l e ) : : v a r i a b l e
r e a l ( RealKind ) , dimension ( : , : , : ) , c o n t i g u o u s , p o i n t e r : : v a r P t r
c l a s s ( R e a l V a r i a b l e ) : : w e i g h t i n g
r e a l ( RealKind ) , dimension ( : ) , c o n t i g u o u s , p o i n t e r : : w g h t P t r
c l a s s ( R e a l V a r i a b l e ) : : t h e R e s u l t
r e a l ( RealKind ) , dimension ( : , : , : ) , c o n t i g u o u s , p o i n t e r : : r e s P t r
type ( Ar rayRegion ) : : c a l c u l a t i o n R e g i o n
i n t e g e r : : idx1 , idx2 , idx3 , xidx , c u r P i e c e
i n t e g e r , dimension (NUM_GRID_DIMS) : : lbnd , ubnd
i n t e g e r , dimension (NUM_GRID_DIMS) : : xUV

! The c u r r e n t v e r s i o n o f F o r t r a n c o m p i l e r s may have some d i f f i c u l t y
! i n o p t i m i z i n g t h e p o i n t e r v a r i a b l e s when t h e y are c o n t a i n e d w i t h i n
! a d e r i v e d t y p e . I n s t e a d f o r use i n a c a l c u l a t i o n , e x p l i c i t l y a s s i g n
! t h e da ta component o f a R e a l V a r i a b l e o b j e c t t o a p o i n t e r .
v a r P t r => v a r i a b l e%data
w g h t P t r => w e i g h t i n g%data
r e s P t r => t h e R e s u l t%data

! use a u n i t v e c t o r t o i s o l a t e a s p e c i f i c d i r e c t i o n a l i n d e x
xUV = x x U n i t V e c t o r

! Loop over t h e number o f p i e c e s t h a t make up t h e a r r a y r e g i o n
do c u r P i e c e =1 , c a l c u l a t i o n R e g i o n%numberOfPieces ( )

! s e t t h e upper and lower l i m i t s f o r t h e 3−D loop
! based on t h e c u r r e n t p i e c e
l bnd = c a l c u l a t i o n R e g i o n%lowerBound ( p i e c e = c u r P i e c e )
ubnd = c a l c u l a t i o n R e g i o n%upperBound ( p i e c e = c u r P i e c e )

do c o n c u r r e n t ( i dx3 = lbnd ( 3 ) : ubnd ( 3 ) , &
idx2 = lbnd ( 2 ) : ubnd ( 2 ) , i dx1 = lbnd ( 1 ) : ubnd ( 1 ) )

! g e t t h e i n d e x f o r t h e x−d i r e c t i o n
x idx = d o t _ p r o d u c t ( ( / idx1 , idx2 , i dx3 / ) , xUV )

! t h e xUV s h i f t s t h e v a r i a b l e one p o i n t i n t h e x−d i r e c t i o n
r e s P t r ( idx1 , idx2 , i dx3 ) = &

w g h t P t r ( x idx ) ∗ v a r P t r ( i dx1 +xUV ( 1 ) , i dx2 +xUV ( 2 ) , i dx3 +xUV ( 3 ) ) &
+ (1.− w g h t P t r ( x idx ) ) ∗ v a r P t r ( idx1 , idx2 , i dx3 )

end do
end do
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Listing 3. Performing the same x-averaging calculation using array regions and non-blocking MPI com-
munication.

! d e f i n e an a r r a y o f ArrayReg ion o b j e c t s t o
! ho ld t h e i n n e r and o u t e r r e g i o n s
type ( Ar rayRegion ) , dimension ( : ) , p o i n t e r : : s p l i t R e g i o n s

! Begin t h e p a r a l l e l communica t ion .
c a l l v a r i a b l e%b e g i n S y n c h r o n i z e B o u n d a r y ( d i r e c t i o n =XX)

! Use a c o n v e n i e n c e r o u t i n e t o s p l i t t h e c a l c u l a t i o n B o u n d s i n t o
! i n n e r and o u t e r p a r t s . The r e s u l t w i l l be saved i n t h e
! a r r a y { \ t t s p l i t R e g i o n s } ; t h e r e g i o n s can be e x t r a c t e d u s i n g
! t h e d e f i n e d c o n s t a n t s : I n n e r R e g i o n and OuterReg ion .
c a l l s p l i t I n n e r A n d O u t e r R e g i o n s ( &

i n p u t A r r a y B o u n d s = c a l c u l a t i o n B o u n d s , &
widthOfLowerOuterRegion = C o o r d i n a t e (XX=1 ,YY=0 ,ZZ=0 ) , &
wid thOfUpperOute rReg ion = C o o r d i n a t e (XX=1 ,YY=0 ,ZZ= 0) , &

s e p a r a t e d R e g i o n s = s p l i t R e g i o n s )

! per fo rm t h e i n n e r c a l c u l a t i o n f i r s t , t h e n w a i t f o r t h e MPI
! communica t ion t o c o m p l e t e .
do cu rReg ion = Inne rReg ion , Oute rReg ion

i f ( cu rReg ion == Oute rReg ion ) then
c a l l v a r i a b l e%endSynchron izeBounda ry ( d i r e c t i o n =XX)

end i f

c a l l a v e r a g e F u n c t i o n ( r e g i o n = s p l i t R e g i o n s ( cu rReg ion ) , &
v a r i a b l e = i n p u t V a r i a b l e , &

w e i g h t i n g = X_weigh tFac to r , &
a v e r a g e = a v e r a g e d V a r i a b l e )

end do

! c l e a n up t h e a l l o c a t e d r e g i o n s t o a v o i d a memory l e a k .
! c l e a r r e g i o n s i s r e q u i r e d because o f a f i n a l i z a t i o n bug
! i n t h e I n t e l F o r t r a n c o m p i l e r
c a l l c l e a r R e g i o n s ( s p l i t R e g i o n s )
d e a l l o c a t e ( s p l i t R e g i o n s )
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packAndSendBoundary(...) allow fine-grained control of the MPI sends and receives–
useful in the Strongly Implicit Solver; but also convenience routines, such as
beginSynchronizeBoundary(...), which automatically pair the appropriate MPI sends
and receives.

MPI communications require arguments based on the physical grid rather than the MPI
decomposition to allow the MPI configuration to be decoupled from the grid configuration. If a
communication is initiated or finalized in a physical direction that is not decomposed, then either
nothing is done if the domain is not periodic in that direction or the boundaries are synchronized
without buffering and no communication is initiated. See listing 4 for an example initiating the
environment and using the convenience routines and listing 5 for example procedure calls to
initiate and complte MPI communications.
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Listing 4. Procedure to initialize the MPI environment and to initiate and complete various types of com-
munication.

c l a s s ( M P I C o n t r o l l e r ) : : wor ld
c l a s s ( M P I C a r t e s i a n C o n t r o l l e r ) : : c a r t C t r l

c a l l world%i n i t M P I w o r l d ( ) ! i n i t MPI e n v i r o n m e n t

! Cr ea t e a p e r i o d i c domain i n bo th d i r e c t i o n s and d i v i d e i n t o
! t h r e e subdomains .
c a l l c a r t C t r l%i n i t ( p a r e n t C o n t r o l l e r =world , &

numProcs InDi r = C o o r d i n a t e (XX=1 ,YY=3 ) , &
p e r i o d i c I n D i r =TRUE_COORD )

! I n i t i a t e MPI s e n d s i n bo th t h e p o s i t i v e and n e g a t i v e
! y−d i r e c t i o n s .
c a l l a V a r i a b l e%b e g i n S y n c h r o n i z e B o u n d a r y ( d i r e c t i o n =YY)

! I n i t i a t e a send i n t h e p o s i t i v e x−d i r e c t i o n . Because
! t h e x−d i r e c t i o n i s n o t decomposed ( o n l y one p r o c e s s i n
! t h e d e c o m p o s i t i o n ) and t h e domain i s p e r i o d i c , t h e lower
! boundary i s i m m e d i a t e l y s e t t o t h e v a l u e s o f t h e upper
! boundary .
c a l l a V a r i a b l e%beginSendUpperEdgeUpward ( d i r e c t i o n =XX)

! By en d i ng t h e communicat ion , t h e program w i l l check
! i f t h e communica t ion i s f i n i s h e d , i f n o t i t w i l l w a i t
! u n t i l i t i s .
c a l l a V a r i a b l e%endSynchron izeBounda ry ( d i r e c t i o n =YY)

! The end c a l l he re i s s t i l l r e q u i r e d because t h e x−d e c o m p o s i t i o n
! i s r u n t i m e c o n f i g u r a b l e .
c a l l a V a r i a b l e%endSendUpperEdgeUpward ( d i r e c t i o n =XX)

11



Listing 5. Example procedure calls to initiate and complete a MPI communications.

c l a s s ( R e a l V a r i a b l e ) , p o i n t e r : : var1 , va r2 ! s e v e r a l r e a l v a r i a b l e s
c l a s s ( M P I C a r t e s i a n C o n t r o l l e r ) , p o i n t e r : : c a r t C t r l ! C a r t e s i a n c o n t r o l l e r
c l a s s ( GroupedComCont ro l l e r ) , p o i n t e r : : commCtrl

! I n i t i a l i z e t h e Grouped communica t ion t o use t h e
! a p p r o p r i a t e MPI c o n t r o l l e r .
c a l l commCtrl%i n i t ( m p i C o n t r o l l e r = c a r t C t r l )

! add v a r i a b l e s t o t h e GroupedComContro l ler
c a l l commCtrl%a d d V a r i a b l e ( i n V a r i a b l e = va r1 )
c a l l commCtrl%a d d V a r i a b l e ( i n V a r i a b l e = va r2 )

! b e g i n s y n c h r o n i z i n g p r o c e s s b o u n d a r i e s f o r var2 and var3 i n
! x−d i r e c t i o n
c a l l commCtrl%b e g i n S y n c h r o n i z e B o u n d a r y ( d i r e c t i o n =XX)

! end s y n c h r o n i z a t i o n p r o c e s s e s
c a l l commCtrl%endSynchron izeBounda ry ( d i r e c t i o n =XX)

! c l e a r t h e v a r i a b l e s from t h e communica t ion c o n t r o l l e r
c a l l commCtrl%r e s e t ( )

Often, prior to a calculation, multiple variables require MPI communication. In general, it is
more efficient to send fewer, larger messages rather than many small messages. Rather than
performing MPI communication individually, an BMF provided class,
GroupedComController, allows for multiple variables to be grouped into a single message.
Communication is initiated by the appropriate type-bound procedure, such as
beginSynchronizeBoundary() (see section A-9 in the appendix). The object will then take care of
buffering the edge(s) being sent to neighboring processes. Reduction operations for multiple
variables may also be bundled together. Because of the larger amount of data involved, gathering
operations are primarily done separately.

3. Results

The results of the MPI version of ABLE remain in good agreement with the laboratory data of
Prasad and Koseff (1989), as shown in figure 2. Switching to the red-black version of SIP does
not change the accuracy of the simulation, and enables more efficient parallel calculation. The
initial, serial version of the steady-state ABLE model (Wang et al., 2012) was efficient and
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Figure 2. Results from ABLE (blue line) with red-black ordering compared with laboratory data (circles)
(Prasad and Koseff, 1989). (a) Vertical profile of non-dimensional, x-component of the velocity.
(b) Horizontal profile of the vertical component of the velocity scaled by the velocity at the top of
the cavity. (c) Vertical slice through the center of the domain, showing the non-dimensional
magnitude and direction of the x- and z-velocity components .

compact; changing the implementation to use BMF results in a decrease in performance due to
the added overhead of the framework and the removal of some optimizations that were less
effective in parallel. This degree of performance decrease is platform dependent; using the Intel
Fortran Compiler on new Intel hardware, results in about a 50% increase in runtime for serial
codes with optimization. Figure 3 show the results of limited scalability tests normalized by the
runtime of the non-BMF version of ABLE. The first plot is the traditional division of a
computational domain among more and more processes, while the second plot shows the results
of expanding the domain to maintain constant domain size per process.

The MPI version of ABLE contains an algorithm that is not especially amenable to parallel
computation, and this is reflected in figure 3. The wavefront parallelism in the LU-factorization
part of SIP, which must be repeated four times per iteration, reduces scalability. However, even
with the reduced scalability, the addition of one extra process will allow each iteration to
complete more quickly than for the serial version.

The red-black ordering within SIP enabled better parallel performance; however, the new
ordering interacted with the outer iterative scheme, the SIMPLE method, for pressure-velocity
coupling. The result is a slowing convergence of the outer iterations. The red-black scheme
excites a 2-∆x wave in the pressure, an already ill conditioned matrix, which results in noise in
the velocity field. Without care, this wave will cause the scheme to become unstable after a
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Figure 3. Scalability results for the red-black SIP-based SIMPLE integration scheme. (a) Normalized ABLE
runtime compared with ideal scalability by dividing a constant-size domain over an increasing
number of processes. (b) Scalability based on keeping the number of grid points per process
constant. Adding processes, requires increasing the total computational domain size. All runtimes
are normalized by the original serial version of ABLE without the overhead associated with
including BMF .

couple hundred SIMPLE iterations.

The easiest way to contain the instability is to increase the number of SIP iterations in when
calculating each velocity component. These matrices are well formed and will converge quickly.
The pressure matrix, however, is ill conditioned; performing additional SIP iterations actually
excites instability requiring the number of SIP iterations to remain one. A slightly more involved
method is to ensure that for each SIMPLE iteration each application of SIP alternates between
calculating the red points or the black points first. The resulting behavior still converges more
slowly than when using the regular, serial SIP, but the model remains stable. The convergence
behavior of the SIMPLE iterations is shown in figure 4. Again the noise introduced by the
red-black ordering prevents the SIMPLE iterations from converging to the same value as the
serial version. Given the larger number of iterations for convergence, using the parallel version
of the steady-state ABLE model currently requires four processors to show a runtime
improvement over the serial version.

Within the current implementation, a thorough attempt at optimization could result in some gains
in performance, especially within BMF itself. In addition, switching to a different scheme for the
pressure-velocity coupling, such as the semi-implicit method for pressure-linked equations
revised (SIMPLER) method, may exhibit faster convergence (Versteeg and Malalasekera, 2007).
Alternative sparse matrix solvers more amenable to MPI decomposition than SIP, such as
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model .

alternating direction implicit (ADI), provide additional avenues. These alternatives have not yet
been explored within ABLE, as attention has shifted to adding a time-dependent integration
scheme.

4. Conclusions

BMF was designed and implemented to ease development and maintenance of the ABLE model
and provide single conceptual interface for performing many of the tasks often repeated in
atmospheric modeling and numerical analysis. By encapsulating related data into classes and
abstracting common operations, the object-oriented framework provides data structures and
associated procedures that efficiently implements MPI without requiring the programmer to
repeatedly delve into the error-prone minutiae of MPI. Furthermore, by reducing the flexibility to
common use-scenarios, BMF provides a system by which communication and calculation can
overlap using more reliable and easily understandable procedure calls.

Parallelization of the SIMPLE iterative scheme with SIP used a red-black scheme similar to the
red-black Gauss-Seidel solver. The results show good agreement with laboratory data and with
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the previous series version of ABLE. The LU-factorization of the sparse operator matrix retains
wavefront parallelism; however, the forward and backward substitution phases can be performed
simultaneously with only edge communications between steps. An issue can occur when
applying the red-black SIP in the SIMPLE scheme, because the red-black calculation results in a
2-∆x wave causing computational instability. By changing ordering of the red-black calculation
on a per-iteration basis, the short wave appears to be controlled without the need for smoothing.
The instability can also be controlled by increasing the number of inner iterations for the three
momentum fields, but not the pressure calculation because in SIMPLE the pressure matrix is ill
conditioned. Other methods for solving the pressure-velocity coupling should be explored, such
as SIMPLER, and for better parallel scalability, other sparse matrix solvers could be implemented.

Benchmarking results against the original, serial version of ABLE, shows a performance penalty
of around 50% due to BMF overhead and the removal of certain optimizations that were not MPI
friendly. However, the longer runtime is easily compensated by adding a second process. The
overall convergence properties of the red-black SIP are slower than the serial version of ABLE;
the steady-state residuals for the pressure, which is always larger than the momentum fields,
oscillate around a larger value, and reach equilibrium in at least double the number of time steps.
Part of this behavior may be attributed to the interactions between the 2-∆ x wave and the
pressure gradient calculation. A possible solution may be to use a different scheme for the
pressure-velocity coupling; for example, the SIMPLER method does away with the need for a
correction of the pressure field by introducing a more complete pressure equation (Versteeg and
Malalasekera, 2007). The scheme requires additional computational resources, but exhibits
better convergence properties and may be more amenable to the red-black SIP. Replacing
SIMPLE with SIMPLER was not attempted at this time; priority was instead given to
implementing a new time-dependent integration scheme.
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Appendix. Battlefield Environment Division Modeling Framework –
Fortran 2008 Interface

The public interface (i.e., neglecting internally used data and routines) of BMF v0.85 is now
described. The framework makes extensive use of Fortran pointers to avoid significant data
duplication and performance issues associated with the creation of array temporaries. The
framework seeks to emphasize code readability and self-documentation (i.e., a code fragment that
does not need comments to explain its purpose) above performance except in the case of large or
deep loops. The following conventions and priorities are employed:

• To aid in code readability and self-documentation, more descriptive routine and variable
names are preferred to shorter, generic names.

• When calling functions, a named argument list is preferred to an unnamed argument list.
Both are acceptable Fortran, but named lists are more readable and less prone to erroneous
arguments, especially if the compiler is unable to detect the error (e.g., mixing the order of
two integer arguments).

! p r e f e r r e d

c a l l a n O b j e c t%c r e a t e A r r a y ( s i z e = ArrayS ize , name=" name " )

c a l l a n O b j e c t%c r e a t e A r r a y ( Ar rayS ize , " name " )

• A pointer that has been set using ‘=>’ should never be deallocated instead it should be
nullified. This convention is followed by BMF and should be followed when using BMF.

a n E x a m p l e P o i n t e r => anExampleObjec t%r e t u r n P o i n t e r ( )

. . .

n u l l i f y ( a n E x a m p l e P o i n t e r ) ! p r op er c o n v e n t i o n

! u s i n g d e a l l o c a t e here w i l l l i k e l y cause a s e g m e n t a t i o n

! f a u l t l a t e r i n t h e program

d e a l l o c a t e ( a n E x a m p l e P o i n t e r )
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• A pointer that is passed, unallocated, as an argument into a routine and then set inside the
routine, should be deallocated when no longer useful.

! t h e r o u t i n e s e t P o i n t e r w i l l a l l o c a t e t h e o b j e c t and a s s i g n i t

! t o a P o i n t e r

c a l l a n O b j e c t%s e t P o i n t e r ( n e w P o i n t e r = a P o i n t e r )

. . .

d e a l l o c a t e ( a P o i n t e r ) ! p r op er c o n v e n t i o n

! Using n u l l i f y w i l l cause a memory l e a k and

! w i l l e v e n t u a l l y c r a s h t h e program

n u l l i f y ( a P o i n t e r )

A-1 GlobalParameters Module

The GlobalParameters module contains a few configuration parameters fixed by the pre-processor
(CMAKE) during building. While other parameters are used internally, model codes using the
BMF framework should only need the following constants:

• NUM_GRID_DIMS indicates the dimensionality of the model grid (for ABLE this will be
three)

• XX, YY, ZZ These are integer constants that define the array index ordering (i.e., which
index corresponds to which physical direction) and are used when a routine needs to know
which direction it is operating on (e.g., findArraySize(direction=XX)).

• xxUnitVector, yyUnitVector, zzUnitVector These are integer arrays for use in calculations
that require an offset in a physical direction. For example, the finite-difference, partial
derivative with respect to x at coordinates (x, y) requires the value at (x + 1, y) and
(x− 1, y). Using the unit vectors allows for compile-time flexibility in choosing (x, y)

array ordering or (y, x) array ordering.

• NUM_MPI_DIMS indicates the number of dimensions used for the MPI decomposition
(ABLE decomposes in all three dimensions).

A-2 LogicalCoordinate Class

A derived-type of type LogicalCoordinate class groups grid associated logical scalars into a single
object for use in manipulating spatial vectors. The goal is to avoid using logical arrays, where
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order is important, and instead improve clarity by specifying the directions explicitly. For
example compare "periodicBoundary = (/ .True ., .True ., . False . /) " to
"periodicBoundary = LogicalCoordinate (XX=.True., YY=.True., ZZ=.True.)".

The accessible derived-type components, type-bound procedures, and external routines are below:

• accessible components

XX x-component logical

YY y-component logical

ZZ z-component logical

• type-bound procedures

asArray() returns a logical array (size NUM_GRID_DIMS) with the components in
appropriate order.

setWithArray(array) sets the components to the contents of array.

inDir(direction) gets the component corresponding to the proper direction constant.

setInDir(direction, value) sets the component corresponding to direction to value.

• overloaded operators

assignment (=) assigns either a logical constant or one LogicalCoordinate type to a
LogicalCoordinate type.

comparison equality (==) returns a LogicalCoordinate indicating whether
elements of the corresponding elements of the left-hand side are equivalent to the
right-hand side.

compound (.and.) returns a LogicalCoordinate with the results of the binary .and.
operator for each component of the left- and right-hand sides.

compound (.or.) returns a LogicalCoordinate with the results of the binary .or.
operator for each component of the left- and right-hand sides.

• external procedures

any( aLogCoord ) returns the logical scalar .True. if any of the components are true.

all( aLogCoord ) returns the logical scalar .True. if all of the components are true.
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• Defined parameters

TRUE_COORD Constant LogicalCoordinate with all components set to true.

FALSE_COORD Constant LogicalCoordinate with all components set to false.

The "asArray" and "setWithArray" routines are designed to be used with other procedures that
expect or return properly ordered integer arrays.

A-3 Coordinate Class

Similar to the previously defined LogicalCoordinate class, the Coordinate class defines an order
independent, vector of integers related to grid directions.

• accessible components

XX x-component integer

YY y-component integer

ZZ z-component integer

• type-bound procedures

asArray() returns an integer array (size NUM_GRID_DIMS) with the components in
appropriate order.

setWithArray(array) sets the components to the contents of the integers in array.

inDir(direction) gets the component corresponding to the proper direction constant.

setInDir(direction, value) set the component corresponding to direction to value.

setConditionally(condition, trueValue, falseValue) takes a LogicalCoordinate
condition and sets the components based on logical tests. trueValue and
falseValue can be scalar integers, (properly ordered) integer arrays, or
Coordinate types.

• overloaded operators

assignment (=) assigns a Coordinate type or scalar integer to the left-hand side. If it
is a scalar integer, all components are set to the same value.

arithmetic (+) returns a Coordinate type with the sum of the individual components of
two Coordinate types or of one coordinate type and a scalar integer.
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arithmetic (-) returns a Coordinate type with the difference of the individual
components of two Coordinate types or of one coordinate type and a scalar integer.

arithmetic (*) returns a Coordinate type with the product of the individual
components of two Coordinate types or of one coordinate type and a scalar integer.

arithmetic (/) returns a Coordinate type with the quotient of the individual
components of two Coordinate types or of a coordinate type divided by a scalar
integer.

comparison equality (==) returns a LogicalCoordinate with the results of component by
component tests for equality between two Coordinate types or a Coordinate
type and an integer.

comparison equality (/=) returns a LogicalCoordinate with the results of component by
component test for not equal between two Coordinate types or a Coordinate
type and an integer.

comparison equality (<) returns a LogicalCoordinate with the results of component by
component test for inequality between two Coordinate types or a Coordinate
type and an integer.

comparison equality (<=) returns a LogicalCoordinate with the results of component by
component test for inequality between two Coordinate types or a Coordinate
type and an integer.

comparison equality (>) returns a LogicalCoordinate with the results of component by
component test for inequality between two Coordinate types or a Coordinate
type and an integer.

comparison equality (>=) returns a LogicalCoordinate with the results of component by
component test for inequality between two Coordinate types or a Coordinate
type and an integer.

• external procedures

mod( coord_A, coord_B ) returns a Coordinate type with the result of the
components of coord_A modulus coord_B.

max( coord_A, coord_B ) returns a Coordinate type with the maximum of the
individual components of coord_A and coord_B.

min( coord_A, coord_B ) returns a Coordinate type with the minimum of the
individual components of coord_A and coord_B.

22



See listing A-1 for example usage.

Listing A-1. Basic example showing usage of Coordinate and LogicalCoordinate types.

type ( C o o r d i n a t e ) : : coord_1
type ( C o o r d i n a t e ) : : coord_2
type ( L o g i c a l C o o r d i n a t e ) : : logCoord_1
l o g i c a l : : t e s t

coord_1 = C o o r d i n a t e (XX=1 , YY=−2, ZZ=3)
coord_2 = 2 ∗ coord_1 ! v a l u e w i l l be ( XX=2 , YY=−4, ZZ=6)

! v a l u e w i l l be ( XX=. F a l s e . , YY=. True . , ZZ=. F a l s e . )
logCoord_1 = coord_2 < coord_1

t e s t = any ( l o g i c a l C o o r d i n a t e ) ! r e t u r n s . t r u e .
t e s t = a l l ( l o g i c a l C o o r d i n a t e ) ! r e t u r n s . f a l s e .

! s e t s coord_2 t o t h e same as above , b u t u s i n g a loop over t h e
! d i f f e r e n t d i r e c t i o n s . T h i s i s more u s e f u l i n a s u b r o u t i n e or f u n c t i o n
! t h a t t a k e s t h e d i r e c t i o n as an argument .
do c u r D i r =1 , NUM_GRID_DIMS

c a l l coord_2%s e t I n D i r ( d i r e c t i o n = cu rDi r , &
v a l u e =2∗ coord_1%i n D i r ( c u r D i r ) )

end do

A-4 ArrayBounds Class

The ArrayBounds class defines a simple region for a multidimensional array. For each
dimension, the lower bounds (default to 1) and upper bounds need to be specified.

• No accessible components.

• type-bound procedures

lowerBound( [direction] ) If direction is not present, lowerBound() returns an integer
array with the lower bound. If direction is specified, the integer lower bound in
that specific direction is returned.

lowerBoundAsCoordinate() returns a Coordinate type with the lower bound.

upperBound( [direction] ) If direction is not present, upperBound() returns an integer
array with the upper bound. If direction is specified, the integer upper bound in
that specific direction is returned.
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upperBoundAsCoordinate() returns a Coordinate type with the upper bound.

setLowerBound([direction], newBound ) sets the lower bound to newBound. If
direction is included, newBound should be an integer. If not, then newBound
can be an integer array or Coordinate type.

setUpperBound([direction], newBound ) sets the upper bound to newBound. If
direction is included, newBound should be an integer. If not, then newBound
can be an integer array or Coordinate type.

upLoBounds( direction ) return a two-element integer array with the lower bound in
direction as the first element and the upper bound as the second.

setUpLoBounds( direction, newBounds ) sets the lower and upper bound in the specified
direction using newBounds, a two-element integer array.

setUpLoBounds( newLowerBound, newUpperBound ) sets the lower and upper bounds
using newLowerBound and newUpperBound. These can be integer arrays or
Coordinate types.

size( [direction] ) If direction is specified, size returns the number of elements in
the specified direction. If direction is not specified then, size() returns the
total number of elements in the array.

shape() returns an integer array with the total number of elements in each grid direction.

shapeAsCoordinate() returns a Coordinate type with the total number of elements in
each grid direction.

addToLowerBound( [direction], change ) If direction is not present, add change to the
lower bound. change can be a scalar integer (applied to all components), integer
array, or a Coordinate type. If direction is specified, then change must be
an integer and it is only applied in the specified direction.

addToUpperBound( [direction], change ) If direction is not present, add change to the
upper bound. change can be a scalar integer (applied to all components), integer
array, or a Coordinate type. If direction is specified, then change must be
an integer and it is only applied in the specified direction.

shiftBoundsInDirection( direction, change ) adds change to the lower and upper
bounds in the specified direction.

• overloaded operators

assignment (=) assigns to an ArrayBounds type. Right-hand side can be either another
ArrayBounds or an integer, which is copied to all components.
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arithmetic (+) returns an ArrayBounds with the sum of the two ArrayBounds objects.

arithmetic (-) returns an ArrayBounds with the difference of the two ArrayBounds
objects.

comparison (==) returns a scalar logical if both the lower and upper bounds of two
ArrayBounds objects are equal.

comparison (/=) returns a scalar logical if any of the lower and upper bounds of two
ArrayBounds objects are not equal.

comparison (<) returns true if the left-hand side array would fit inside or share some of
the boundaries of the right-hand side array, but they are not equal.

comparison (<=) returns true if the left-hand side array would fit inside or is equal to the
boundaries of the right-hand side array.

• No external procedures

See listing A-2 for example usage.

Listing A-2. Basic example showing usage of ArrayBounds type.

type ( ArrayBounds ) : : a r r a y _ 1
type ( ArrayBounds ) : : a r r a y _ 2
i n t e g e r : : numberOfElements
type ( C o o r d i n a t e ) : : a r r a y S h a p e
type ( C o o r d i n a t e ) : : upperBound
type ( C o o r d i n a t e ) : : lowerBound

c a l l a r r a y _ 1%se tBounds ( newLowerBound= C o o r d i n a t e (XX=0 , YY=1 , ZZ=−1) , &
newUpperBound= C o o r d i n a t e (XX=3 , YY=3 , ZZ=3) )

numberOfElements = a r r a y _ 1%s i z e ( XX ) ! r e t u r n s 4

numberOfElements = a r r a y _ 1%s i z e ( ) ! r e t u r n s 60

! The below r e t u r n s C o o r d i n a t e ( XX=4 , YY=3 , ZZ=5)
a r r a y S h a p e = a r r a y _ 1%s h a p e A s C o o r d i n a t e

A-5 ArrayRegion Class

The ArrayRegion class describes a piecewise-defined array space. An ArrayRegion object’s
primary purpose is to easily separate a simple domain into multiple regions when only part of the
domain is ready to be calculated (e.g., other parts are waiting on MPI communication to
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complete). An ArrayRegion object is a container object holding multiple ArrayBounds objects as
pieces of the array region. Pieces can be added, removed or modified directly.

• No accessible components.

• type-bound procedures

numberOfPieces() returns the number of ArrayBounds pieces currently defined in the
region.

addPiece([newPiece, newLowerBound, upperBound]) The addPiece subroutine can
take either a single ArrayBounds object newPiece or both newLowerBound and
newUpperBound arguments that are either integer arrays or Coordinate types.

removePiece([pieceIndex, theArrayBounds]) remove piece will remove an
ArrayBounds object from the region either by passing its pieceIndex or by
removing all regions that are equal to a passed ArrayBounds object.

reset() reset the array region to have zero pieces.

pieceBounds( piece ) return the ArrayBounds object that corresponds to index piece.

lowerBound( piece, [direction] ) return the lower bound of the ArrayBounds object with
index piece as an integer array. If direction is specified a scalar integer is
returned.

lowerBoundAsCoordinate( piece ) return the lower bound of the ArrayBounds object
that corresponds to index piece as a Coordinate type.

upperBound( piece, [direction] ) return the upper bound of the ArrayBounds object with
index piece as an integer array. If direction is specified a scalar integer is
returned.

upperBoundAsCoordinate( piece ) return the upper bound of the ArrayBounds object
that corresponds to index piece as a Coordinate type.

setLowerBound( piece, [direction], newBound ) sets the lower bound of the
ArrayBounds object at index piece with an integer array or a Coordinate type.
If direction is specified, then newBound should be a scalar integer.

setUpperBound( piece, [direction], newBound ) sets the upper bound of the
ArrayBounds object at index piece with an integer array or a Coordinate type.
If direction is specified, then newBound should be a scalar integer.
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setBounds( piece, [newBounds, newLowerBound, newUpperBound] ) replace the
ArrayBounds object at index piece with the ArrayBounds object newBounds, or
replace with an ArrayBounds object defined by newLowerBound and
newUpperBound which can be either integer arrays or Coordinate types.

• No overloaded operators.

• external procedures

splitIntoInnerAndOuterRegions(inputArrayBounds,
widthOfLowerOuterRegion, widthOfUpperOuterRegion, separatedRegions)
This is a convenience routine that takes an ArrayBounds object
(inputArrayBounds) and separates it into an inner and outer region, based on the
passed Coordinate types widthOfLowerOuterRegion and
widthOfUpperOuterRegion. The result is an allocatable array of ArrayRegion
objects (i.e., the argument passed into separatedRegions should have the
following attributes: dimension(:), pointer. Accessing the array regions is done with
the parameters fullRegion, innerRegion, and outerRegion for the undecomposed
array region or the inner and outer regions.

splitIntoInnerAndOuterRegions(inputArrayBounds,
widthOfOuterRegions, separateLowerEdge, separateUpperEdge,
separatedRegions) This is a convenience routine that takes an ArrayBounds object
(inputArrayBounds) and separates it into an inner and outer regions, based on the
integer widthOfOuterRegions and the LogicalCoordinate types
separateLowerEdge and separateUpperEdge, which indicate whether the
edge in each direction is separated from the inner array region. The result is the type
as above.

clearRegions( regions ) Clear regions addresses a bug in the Intel Fortran compilers
where final routines are not called if the derived type is part of an allocatable array.
This means that the internal data structures are not properly deallocated when calling
deallocate(regions). Use this function before deallocating an array of
regions.

• defined parameters

FullRegion Constant to get the full ArrayRegion when using the above convenience
routines to split inner and outer regions.
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InnerRegion Constant to get the inner ArrayRegion when using the above convenience
routines to split inner and outer regions.

OuterRegion Constant to get the outer ArrayRegion when using the above convenience
routines to split inner and outer regions.

See listing A-3 for example usage.

A-6 MPIController Class

The MPIController and MPICartesianController classes control MPI-based communication
between processes. MPIController is built around a general MPI communicator with a few
limited routines for probing information about the number of processes and the unordered gather
and reduce operations. Every model using the BMF framework should have an instance of
MPIController class that will be initialized with MPI_COMM_WORLD– a communicator
representing all available processes. All model programs using BMF should call initWorld at the
beginning of the program and finalizeWorld at the end. If the MPI library is not available, an
option is available in the build options to turn off MPI. The code will run in series mode, and all
routines will return sensible results for the series run. Values passed as arguments related to
multiple processes will be ignored. See listing A-4 in section A-7 below for the most common
calls to objects of type MPIController and the following MPICartesianController.

MPIController contains the following routines:

• No accessible components.

• type-bound procedures

initWorld() initializes the MPI environment and creates a copy of MPI_COMM_WORLD
for future use in the program. This routine must be called before any other MPI
related routines

finalizeWorld() cleans up the MPI environment before the program exits. This routine
must be called after the last MPI routine before the program exits.

communicator() returns a scalar integer with the MPI communicator handle.

rank() Return a scalar integer with the current process rank.

numberOfProcesses() returns a scalar integer indicating the number of processes in the
communicator.
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Listing A-3. An example showing usage of ArrayRegion type for a two-dimensional model.

type ( ArrayBounds ) : : anArrayBounds
type ( Ar rayRegion ) , dimension ( : ) , a l l o c a t a b l e : : s p l i t R e g i o n s

...

! c r e a t e an i n n e r r e g i o n t h a t does n o t i n c l u d e 1−p o i n t s i d e r e g i o n s
! i n t h e x−d i r e c t i o n
c a l l s p l i t I n t o I n n e r A n d O u t e r R e g i o n s ( &

i n p u t A r r a y B o u n d s =anArrayBounds , &
widthOfLowerOuterRegion = C o o r d i n a t e (XX=1 ,YY=0 ) , &
wid thOfUpperOute rReg ion = C o o r d i n a t e (XX=1 ,YY= 0) , &

s e p a r a t e d R e g i o n s = s p l i t R e g i o n s )

c a l l mpi%b e g i n S y n c h r o n i z e B o u n d a r y ( d i r e c t i o n =XX)
do cu rReg ion = Inne rReg ion , Oute rReg ion

i f ( cu rReg ion == o u t e r R e g i o n ) then
c a l l mpi%endSynchron izeBounda ry ( d i r e c t i o n =XX)

end i f

numOfPieces = s p l i t R e g i o n s ( cu rReg ion )% numberOfPieces ( )

do c u r P i e c e =1 , numOfPieces
lowerBound = s p l i t R e g i o n s ( cu rReg ion )%lowerBound ( p i e c e = c u r P i e c e )
upperBound = s p l i t R e g i o n s ( cu rReg ion )%upperBound ( p i e c e = c u r P i e c e )

! Note : f o r f o r t r a n f i r s t i n d e x s h o u l d be i n i n n e r loop .
do i n de x2 =lowerBound ( 2 ) , upperBound ( 2 )

do i n de x1 =lowerBound ( 1 ) : upperBound ( 1 ) )
r e s u l t ( index1 , i n de x2 ) = v a r i a b l e _ 1 ( index1 , i nde x2 ) &

− v a r i a b l e _ 1 ( index1 −1, i n de x2 )
end do

end do

end do ! end loop over a l l p i e c e s o f curReg ion

end do ! end loop over i n n e r and o u t e r r e g i o n s

! c l e a n up i n t e r n a l da ta i n t h e r e g i o n s
c a l l c l e a r R e g i o n s ( s p l i t R e g i o n s )
d e a l l o c a t e ( s p l i t R e g i o n s )
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copy( copy ) copies the communicator to a new communicator (in MPI terms the new
communicator will refer to the same processes, but will have a separate context).
copy should be an unassociated pointer to an MPIController. Because the pointer is
set in an argument, the resulting copy should call finalizeMPIController() and then be
deallocated (a bug in the Intel Fortran compiler prevents the use of Fortran’s
finalization routine).

split( color, [key], newController ) splits the communicator into multiple communicators
based on the scalar integer color as the criterion. The rank order of the processes
assigned to a specific communicator can be customized using the optional integer
argument key. Again, the new communicator must be an unassociated pointer of
type MPIController, and should be finalized and deallocated when no longer needed.

splitAndLink( validColors, color, [key], localController, remoteController ) splits the
communicator into two communicators and links the two communicators by an
intercommunicator. The separation criterion is the scalar integer color, and the
valid values for color are passed as a two-element array. Intercommunicators only
link two intracommunicators; thus, only two color values are allowed. The rank order
of the processes assigned to a specific communicator can be customized using the
optional integer argument key. Both the local and remote MPIController types
must be unassociated pointers, and should be finalized and deallocated when no
longer needed.

finalizeMPIController() frees the communicator and readies the controller for a separate
deallocation.

gather(sendBuffer, [allBufferSizes], root, receiveBuffer) collects all values input via
sendBuffer on a single process with rank root. sendBuffer can be a scalar or
one-dimensional array of type integer or real(RealKind). The receiveBuffer
should be an unallocated contiguous pointer of the appropriate type (integer or
real(RealKind)). If the sendBuffers are not all equal size, then an integer array,
allBufferSizes, is required to indicate the number of elements coming from
each process in the communicator. The gathered values will be in order of process
rank.

allGather(sendBuffer, [allBufferSizes], root, receiveBuffer) Similar to
gatherBuffer(...), but instead of collecting the values onto a single buffer, all
processes receive a copy of the result.

reduce(buffer, operation, root) returns the result of a single operation on the values input
via buffer, which can be integer, logical, or real(RealKind) and scalar or
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one-dimensional array. Only process with rank equal to root will get the result, and
all processes must have the same size buffers. The available operations are the
following:

– MaxOp Maximum value of all elements

– MinOp Minimum value of all elements

– SumOp Sum of all elements.

– ProdOp Product of all elements

– AndOp Logical AND operation

– OrOp Logical OR

– XorOp Logical XOR (exclusive or)

allReduce(buffer, operation) Similar to reduceBuffer(...) except all processes
will receive the computed value.

• No overloaded operators.

• No external procedures.

A-7 MPICartesianController Class

The MPICartesianController is a subclass of MPIController. As such it inherits all of the above
type-bound procedures. It also defines additional routines to allow for communication between
the processes. A cartesian decomposition divides a rectangular grid into smaller rectangles. The
term face is used to describe the sides of the decomposed rectangles. An argument named face
takes either the constants LowerFace or UpperFace.

• No accessible components.

• type-bound procedures

init( parentController, numProcessesInDir, periodicInDir ) creates a new
communicator using the same processes in parentController but with a
cartesian topology. The dimensions of the decomposition are specified in the
Coordinate type argument numProcessesInDir. Each direction in the grid
must be specified as either periodic or nonperiodic by passing the
LogicalCoordinate type periodicInDir.

isPeriodic([direction]) returns a LogicalCoordinate of whether the grid is periodic.
If the scalar integer direction is specified a logical scalar is returned.
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coordinates([direction]) returns a Coordinate type (or scalar if integer direction
is specified) of the current process’ coordinates in the MPI topology. Coordinates are

zero based as is the MPI convention. For directions that are undecomposed, the
coordinate will always be zero.

coordinatesForRank(rank) returns the coordinates (as a Coordinate type) for the process
with rank equal to rank.

shape([direction]) returns the number of processes in each direction (as a Coordinate
type) or a scalar integer if integer direction is specified.

iamLowerEdge([direction]) returns a LogicalCoordinate (or scalar logical if integer
direction is specified) with true values if the process is a lower edge process (i.e.,
coordinate in the direction is zero).

iamUpperEdge([direction]) returns a LogicalCoordinate (or scalar logical if integer
direction is specified) with true values if the process is an upper edge process (i.e.,
coordinate in the direction is the number of processes in that direction minus one).

neighborExists(face, direction) returns a scalar logical true if the neighbor exists. face

should be one of integer constants upperFace or lowerFace, and direction
should be one of the integer direction constants.

nullRequest() returns a constant used to indicate a completed or non-existant request (a
request contains status information for a non-blocking MPI communication
operation). This is a constant specified by the MPI library, but if MPI is not available
a different constant is used.

sendReceiveNeighbor(direction, sendface, sendBuffer, sendRequest,
receiveFace, receiveBuffer, receiveRequest) send a one-dimensional array of data
(sendBuffer) in the specified direction (positive direction for upperFace
negative direction for lowerFace). Received data is stored in receiveBuffer.
The send and receive requests should be queried before either the send or receive
buffers are read or modified.

receiveFromNeighbor(direction, receiveFace, receiveBuffer, receiveRequest) receive a
one-dimensional array of data (sendBuffer) from the specified direction (positive
direction for upperFace negative direction for lowerFace). Calling this routine
should be followed by a call to sendToNeighbor. This is useful when more
fine-grained control over initiating sends and receives is required.

sendToNeighbor(direction, sendface, sendBuffer, sendRequest) send a
one-dimensional array of data (sendBuffer) in the specified direction (positive
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direction for upperFace negative direction for lowerFace). Calling this routine
should have been preceeded by a call to receiveFromNeighbor. This is useful when
more fine-grained control over initiating sends and receives is required.

waitForMPItoComplete(request) waits for a send or receive to complete. request

can either be a scalar integer or an array of integers all of which must finish before the
subroutine will return.

• No overloaded operators.

• No external procedures

• Defined parameters

LowerFace Constant used to refer to the lower side of a decomposed piece of the domain.

UpperFace Constant used to refer to the upper side of a decomposed piece of the domain.

The communication routines are not meant to be used directly in the model. Instead, the
MPICartesianController acts as a delegate for other objects which will package the data properly
for MPI communication. See listing A-4 for the most common calls to MPICartesianControllers.

A-8 RealVariable Class

The RealVariable class is a container for an array of real type. By connecting a reference to
an MPICartesianController as a delegate, MPI communication is enabled. The object
can maintain its own send and receive buffers and requests, to ensure communication has
completed. If several variables will be performing MPI communications in the same direction at
the same time, a GroupedComController should be used to decrease the number of
messages being sent.

• accessible components

data allows for performance optimization; the primary data pointer is made accessible.
The variable component is a 3-D contiguous pointer of type real(RealKind).

• type-bound procedures

initScalar([name], initialValue, [mpiController], [processDependent]) initializes the
variable as a single element array with an initial value given by initialValue. If
mpiController (a pointer of type MPICartisianController) is present, it
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Listing A-4. Preparing a program to use MPI communication.

type ( M P I C o n t r o l l e r ) : : wor ld
c l a s s ( M P I C a r t e s i a n C o n t r o l l e r ) , p o i n t e r : : c a r t C t r l
type ( C o o r d i n a t e ) : : d e c o m p o s i t i o n
type ( L o g i c a l C o o r d i n a t e ) : : p e r i o d i c
type ( C o o r d i n a t e ) : : myCoords

c a l l world%i n i t W o r l d ( ) ! r e q u i r e d b e f o r e o t h e r MPI c a l l s

myRank = wor ld%rank ( ) ! rank o f each p r o c e s s i n MPI_COMM_WORLD

! c r e a t e a 2−D d e c o m p o s i t i o n t h a t i s
! p e r i o d i c i n bo th d i r e c t i o n s
d e c o m p o s i t i o n = C o o r d i n a t e (XX=2 ,YY=3)
p e r i o d i c = L o g i c a l C o o r d i n a t e (XX= . True . ,YY= . True . )

a l l o c a t e ( c a r t C t r l )
c a l l c a r t C t r l%i n i t ( p a r e n t C o n t r o l l e r =world , &

numProcs InDi r = d e c o m p o s i t i o n , &
p e r i o d i c I n D i r = p e r i o d i c )

! p r o c e s s e s may be r e o r d e r e d so myRank may n o t e q u a l myNewRank
myNewRank = c a r t C t r l%rank ( )

myCoords = c a r t C t r%c o o r d i n a t e s ( )

! t h r e e p r o c e s s e s w i l l r e t u r n t r u e and t h r e e f a l s e
lowerEdge = c a r t C t r l%iamLowerEdge (XX)

c a l l c a r t C t r l%f i n a l i z e M P I C o n t r o l l e r ( ) ! done u s i n g c a r t C t r l
d e a l l o c a t e ( c a r t C t r l )

c a l l world%f i n a l i z e W o r l d ( ) ! r e q u i r e d b e f o r e program ends
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will be attached to allow for MPI operations. The processDependent argument
of type LogicalCoordinate is for parallel output purposes. If set to true in a
direction, output will ensure that each process writes its copy of the variable (default
is true).

init([name], [bounds, extent], [initialValue, initialSubroutine],
[ghostPointWidth], [mpiController], [processDependent]) initializes the variable
with size given by a Coordinate type extent or explicit array bounds given by
bounds of type ArrayBounds. Initialization of the internal array can be set using
the constant initialValue or by a function pointer passed into
initSubroutine. If mpiController (a pointer of type
MPICartisianController) is present, it will be attached to allow for MPI
operations. ghostPointWidth adds additional layers of points to store data from
neighboring processes. This argument is ignored if mpiController is not passed.
The processDependent argument of type LogicalCoordinate is for parallel
output purposes. If set to true in a direction, output will ensure that each process
writes its copy of the variable (default is true).

copy([newBounds, ghostPointWidth], copy]) creates a copy of the RealVariable with
different bounds based on the newBounds and ghostPointWidth arguments, or
creates a full copy. copy is an unassociated pointer; as such, it should be deallocated
when no longer needed.

name() returns a trimmed string containing the variable name.

setName(newName) sets the name of the variable to newName.

bounds() returns an ArrayBounds type with the local (decomposed) variable bounds.
BMF uses the Fortran feature that allows arrays to begin with numbers other than one,
so the local part of an array that has been spread across multiple processes will
continue the element numbering from the neighbor.

boundsWithoutBoundaries() returns the ArrayBounds type of the local variable ignoring
ghost points and lateral boundaries on processes along the edge of the domain for
non-periodic boundary conditions.

boundsWithGhostPoints() returns the ArrayBounds type of the local variable including
the ghost-point buffers used to store data from neighboring processes.

as1D() returns a one-dimensional pointer to the variable data. This serializes the 3-D
array, and is primarily for variables that are actually one dimensional arrays (e.g., a
1× 1× 10 array).
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as3D() returns a 3-D pointer to the variable data.

asScalar() returns a scalar pointer to the variable data. Used when the variable array
contains only a single element.

Communication routines

beginSynchronizeBoundary(direction) begins two separate communication
operations with neighboring processes in the soecified direction sending the
appropriate data to both the upper and lower neighboring processes. The variable
keeps track of the MPI requests. Should be paired with an
endSynchronizeBoundary in the same direction. Communications in
separate directions can be in process simultaneously by calling this routine in
each direction.

endSynchronizeBoundary(direction) ensures the MPI communication operations
initiated by a beginSynchronizeBoundary call have completed and the
resulting data is unpacked and saved to the appropriate ghost points.

beginSendLowerBoundaryDownward(direction) Similar to
beginSynchronizeBoundary, this routine initiates a one-sided
communication, sending the lower face in direction to the appropriate
neighbor process.

endSendLowerBoundaryDownward(direction) Similar to
endSynchronizeBoundary, this routine ensures the communication already
initiated has completed and communication buffers are unpacked and deallocated.

beginSendUpperBoundaryUpward(direction) same as
beginSendLowerBoundaryDownward, but sending the upper face to the
appropriate neighbor process.

endSendUpperBoundaryUpward(direction) similar to
endSendUpperBoundaryUpward, but sending the upper face to the
appropriate neighbor process.

Additional Communication routines (for more fine-grained control over MPI
communication). A single MPI communication should utilize all four subroutines.

receiveBoundary(recvFace, direction) creates receive buffers for an MPI
communication and initiates a non-blocking MPI receive. Should be called
before a corresponding
packAndSendBoundary.

packAndSendBoundary(sendFace, direction) populates communication buffers
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and initiates a non-blocking MPI communication with the appropriate neighbor
process.

cleanupSendBoundary(sendFace, direction) waits for MPI send request to
complete, and then cleans up send buffers. Both receiveBoundary and
packAndSendBoundary should have been called, otherwise program will be
stuck in an infinite loop.

unpackReceivedBoundary(recvFace, direction) waits for MPI receive request to
complete, and then unpacks and deallocates the receive buffers. Both
receiveBoundary and packAndSendBoundary should have been called
already, else the program will be stuck in an infinite loop.

• No overloaded operators.

• No external procedures

See listing A-5 for example usage, including a basic calculation.

A-9 GroupedComController Class

While individual variables are capable of utilizing MPI for sharing data with separate processes.
Because of the overhead required to initiate an MPI message, it is more efficient to send multiple
variables with a single message. A GroupedComController uses pointer references to
variables to create appropriately sized send and receive buffers, and to post MPI send and receive
calls.

• No accessible components.

• type-bound procedures

init(mpiController, [numberOfVariables]) initializes the object and saves a reference to
the passed MPICartesianController pointer. If the optional
numberOfVariables is present, an array of pointers is pre-allocated.

addVariable(variable) adds the RealVariable pointer type variable to the array of
RealVariable pointers.

clearVariables() deallocates the array of pointers containing RealVariable references.

Communication routines
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Listing A-5. Example usage of the RealVariable class.

c l a s s ( R e a l V a r i a b l e ) , p o i n t e r : : s c a l a r V a r i a b l e
c l a s s ( R e a l V a r i a b l e ) , p o i n t e r : : v a r i a b l e _ 1 D
c l a s s ( R e a l V a r i a b l e ) , p o i n t e r : : v a r i a b l e _ 3 D
c l a s s ( M P I C a r t e s i a n C o n t r o l l e r ) , p o i n t e r : : c a r t C t r l
type ( ArrayBounds ) : : v a r i a b l e B o u n d s
r e a l ( RealKind ) , p o i n t e r : : s c a l a r V a l u e
r e a l ( RealKind ) , dimension ( : ) , c o n t i g u o u s , p o i n t e r : : a r ray_1D
r e a l ( RealKind ) , dimension ( : , : , : ) , c o n t i g u o u s , p o i n t e r : : a r ray_3D

! c r e a t e a s c a l a r R e a l V a r i a b l e t h a t w i l l have t h e
! same v a l u e on a l l p r o c e s s e s
c a l l s c a l a r V a r i a b l e%i n i t ( name=" a s c a l a r " , &

i n i t i a l V a l u e =2 . _RealKind , &
p r o c e s s D e p e n d e n t =FALSE_COORD )

! c r e a t e a 1−D a r r a y w i t h 5 e l e m e n t s i n t h e z−d i r e c t i o n
c a l l v a r i a b l e _ 1 D%i n i t ( name=" a 1−D a r r a y " , &

e x t e n t = C o o r d i n a t e (XX=1 ,YY=1 ,ZZ=5 ) , &
i n i t i a l V a l u e =4 . _RealKind , &

p r o c e s s D e p e n d e n t =FALSE_COORD )

! c r e a t e a 3−D a r r a y w i t h bounds=v a r i a b l e B o u n d s
! t h a t has g h o s t p o i n t s a long t h e b o u n d a r i e s .
c a l l v a r i a b l e _ 3 D%i n i t ( name=" a 3−D a r r a y " , &

bounds= v a r i a b l e B o u n d s , &
i n i t i a l V a l u e =6 . _RealKind , &

c a r t e s i a n C o n t r o l l e r = c a r t C t r l &
g h o s t P o i n t W i d t h =2 )

! a sample c a l c u l a t i o n by a c c e s s i n g t h e v a r i a b l e component
s c a l a r V a l u e => s c a l a r V a r i a b l e%a s S c a l a r ( )
a r ray_1D => v a r i a b l e _ 1 D%as1D ( ) ! a c c e s s da ta as a 1−D a r r a y
ar ray_3D => v a r i a b l e _ 1 D%as3D ( ) ! a c c e s s da ta as a 3−D a r r a y

! sp re ad t h e v a l u e s i n oneDimArray t o threeDimArray
! n o t e r e v e r s e o r d e r i n g o f t h e l o o p s t o p r e v e n t memory s t r i d i n g
do c o n c u r r e n t ( i n dex 3 =1 ,5 , i n de x2 =1 ,5 , i n de x1 =1 ,5 )

! z z U n i t V e c t o r i s G l o b a l l y a c c e s s i b l e
z In de x = d o t _ p r o d u c t ( ( / index1 , index2 , i nde x3 / ) , z z U n i t V e c t o r )

a r ray_3D ( index1 , index2 , i n de x3 ) = s c a l a r V a l u e ∗ ar ray_1D ( z I n de x )
end do
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beginSynchronizeBoundary(direction) begins two separate communication
operations with neighboring processes in the specified direction sending the
appropriate data to both the upper and lower neighboring processes. The variable
keeps track of the MPI requests. Should be paired with an
endSynchronizeBoundary in the same direction. Communications in
separate directions can be occurring simultaneously.

endSynchronizeBoundary(direction) ensures the MPI communication operations
initiated by a beginSynchronizeBoundary call have completed and the
resulting data is unpacked and saved to the appropriate ghost points.

beginSendLowerBoundaryDownward(direction) Similar to
beginSynchronizeBoundary, this routine initiates a one-sided
communication, sending the lower face in direction to the appropriate
neighbor process.

endSendLowerBoundaryDownward(direction) Similar to
endSynchronizeBoundary, this routine ensures the communication already
initiated has completed and communication buffers are unpacked and deallocated.

beginSendUpperBoundaryUpward(direction) Same as
beginSendLowerBoundaryDownward, but sending the upper face to the
appropriate neighbor process.

endSendUpperBoundaryUpward(direction) Similar to
endSendUpperBoundaryUpward, but sending the upper face to the
appropriate neighbor process.

Additional Communication routines (for more fine-grained control over MPI
communication). A single MPI communication should utilize all four subroutines.

receiveBoundary(recvFace, direction) creates receive buffers for an MPI
communication and initiates a non-blocking MPI receive. Should be called
before a corresponding
packAndSendBoundary.

packAndSendBoundary(sendFace, direction) populates communication buffers
and initiates a non-blocking MPI communication with the appropriate neighbor
process.

cleanupSendBoundary(sendFace, direction) waits for MPI send request to
complete, and then cleans up send buffers. Both receiveBoundary and
packAndSendBoundary should have been called, otherwise program will be
stuck in an infinite loop.
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unpackReceivedBoundary(recvFace, direction) waits for MPI receive request to
complete, and then unpacks and deallocates the receive buffers. Both
receiveBoundary and packAndSendBoundary should have been called
already; if not the program will be deadlocked.

• No overloaded operators.

• No external procedures

See listing A-6 for an example using the GroupedComController.

Listing A-6. An example, initializing and using a GroupedComController.

c l a s s ( GroupedComCont ro l l e r ) , p o i n t e r : : grpComm
c l a s s ( M P I C a r t e s i a n C o n t r o l l e r ) , p o i n t e r : : c a r t C t r l
c l a s s ( R e a l V a r i a b l e ) , p o i n t e r : : v a r i a b l e 1
c l a s s ( R e a l V a r i a b l e ) , p o i n t e r : : v a r i a b l e 2

! i n i t w i t h p o i n t e r r e f e r e n c e t o an
! M P I C a r t e s i a n C o n t r o l l e r o b j e c t
c a l l grpComm%i n i t ( c a r t C t r l )

! add v a r i a b l e r e f e r e n c e s
c a l l commCtrl%a d d V a r i a b l e ( v a r i a b l e 1 )
c a l l commCtrl%a d d V a r i a b l e ( v a r i a b l e 2 )

! Begin s y n c h r o n i z e g h o s t p o i n t s i n t h e x−d i r e c t i o n f o r bo th
! s i d e s o f t h e l o c a l v a r i a b l e s .
c a l l commCtrl%b e g i n S y n c h r o n i z e B o u n d a r y ( d i r e c t i o n =XX )

! e n s u r e t h e communica t ion i s f i n i s h e d and t h a t
! b u f f e r s are unpacked and c l e a n e d up .
c a l l commCtrl%endSynchron izeBounda ry ( d i r e c t i o n =XX )
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List of Symbols, Abbreviations, and Acronyms

3-D three-dimensional
ABLE Atmospheric Boundary Layer Environment
ADI alternating direction implicit
BMF Battlefield Environment Division Modeling Framework
CFD computational fluid dynamics
CUDA Compute Unified Device Architecture
GUI graphical user interface
HDF5 Hierarchal Data Format version 5
MIC many integrated core
MPI Message Passing Interface
MVC Model-View-Controller
NetCDF Network Common Data Form
SIMPLE semi-implicit method for pressure-linked equations
SIMPLER semi-implicit method for pressure-linked equations revised
SIP Strongly Implicit Procedure
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